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Revealing true coupling strengths in two-
dimensional spectroscopy with sparsity-based 
signal recovery (running title: Elucidating 2D 
spectra with sparse signal recovery) 
 

Hadas Frostig1, Tim Bayer1,2, Yonina C. Eldar3, and Yaron Silberberg1 

Two-dimensional (2D) spectroscopy is used to study the interactions between energy levels in both 
the field of optics and nuclear magnetic resonance (NMR). Conventionally, the strength of 
interaction between two levels is inferred from the value of their common off-diagonal peak in the 
2D spectrum, which is termed the cross peak. However, stronger diagonal peaks often have long 
tails that extend into the locations of the cross peaks and alter their values. Here, we introduce a 
method for retrieving the true interaction strengths by using sparse signal recovery techniques 
and apply our method in 2D Raman spectroscopy experiments. 

Keywords: multidimensional spectroscopy; sparsity-based algorithms; nonlinear optics.

INTRODUCTION 

Quantifying the coupling between energy levels 
is key to retrieving information about the 
structure of a molecule and its interaction with 
the environment. The coupling can be studied 
using two-dimensional (2D) spectroscopy, 
where the system is excited via one energy level 
and probed via another, thus giving information 
about the energy transfer between them. Since 
excitation and probing directly in the frequency 
domain would require multiple sources that are 
both in the correct frequency range to excite 
these transitions and have some spectral 
tunability, this approach is technically 
challenging. Alternatively, the excitation and 
probing can be done in the time domain by 
using short pulses. The data may then be 
Fourier-transformed to retrieve the spectral 
response. Information about the coupling 

between two energy levels, αω  and βω , is 

extracted from the magnitude of their cross peak 

in the 2D spectral response at coordinates ( αω , 

βω )  (1). This technique, termed two-

dimensional Fourier-Transform (2D-FT) 
spectroscopy, is widely used and applied in two-
dimensional optical spectroscopies (2D-Vis, 
2D-IR, and 2D Raman) (1–9) and two-
dimensional nuclear magnetic resonance 
spectroscopy (2D-NMR) (10–12). 

Although the discrete Fourier transform, which 
is often realized by the fast Fourier transform 
(FFT) algorithm, is a powerful tool for spectral 
analysis, it can be limiting in cases in which the 
time-domain signal is composed of several 
independent components. In the spectra of such 
signals, the value at a particular frequency is the 
coherent sum of the spectral responses of all 

 
ACCEPTED ARTICLE PREVIEW 

 

© 2017 Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences (CAS). All 
rights reserved. 



time-domain signal components at that 
frequency. Since the majority of signals are 
composed of spectral components that are not 
infinitely narrow, the tails of the stronger signal 
components may spill into or even cover other 
weaker features. This effect is particularly 
problematic when examining cross peaks in a 
2D spectrum, which are  inherently weaker than 
their corresponding diagonal peaks. 

Here, we present a signal analysis method based 
on sparse signal recovery that eliminates such 
ambiguities by identifying each component of 
the time-domain signal and finding its 
individual spectral response. Our method 
applies the Block Orthogonal Matching Pursuit 
(BOMP) algorithm by Eldar et al. (13) directly 
to the 2D time-domain data. Using BOMP, the 
stronger signal components that cause diagonal 
peaks are first identified and removed, and 
thereafter the weaker cross peak signal is 
analyzed. 

To demonstrate the difficulties that arise in 
cross peak analysis using FFT and their possible 
resolution, we discuss an example from 2D 
Raman spectroscopy (8). A typical pulse 
sequence used for impulsive excitation in 2D 
Raman spectroscopy is shown in the inset of 

Fig. 1a. The two time delays, )1(t and )2(t , are 
scanned, and the signal is measured for each 
delay pair (the analysis of time-resolved 2D 
spectra is discussed at the end of the following 
section). Fig. 1a shows the results of a 
simulation of 2D Raman spectroscopy 
performed on CCl4 molecules in which the 
coupling between energy levels was turned off 
(see SI II for details). The corresponding 2D 
spectrum, which was computed by applying 
FFT to the data in Fig. 1a, is shown in Fig. 1b. 
The reflected second quadrant is presented for 

clarity due to artifacts on the diagonal of the 
first quadrant. The peaks on the diagonal 
(dashed black line) correspond to the three 
Raman lines of CCl4, namely, 217, 313 and 459 
cm-1. Although no cross peaks should be 
present, the long tail from the diagonal 313 cm-1 
peak combines with the tail from the diagonal 
459 cm-1 peak to form a false peak at (313 cm-

1,459 cm-1) (marked by a red arrow). Such long 
tails can be caused by two mechanisms: 
physical broadening of the vibrational level and 
artifacts due to the discrete nature of FFT. The 
former mechanism, homogenous broadening, 
creates long decaying tails due to the Lorentzian 
function in the molecular lineshape. The latter 
mechanism is known as spectral leakage and is 
a result of the convolution of the true spectral 
response with a sinc function due to the finite 
temporal window of the measurement. A partial 
solution for spectral leakage is provided by 
apodization, but it comes at the expense of a 
loss in both resolution and sensitivity (14,15). 
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Figure 1 Simulation: an example of difficulties in 
interpreting 2D-FT spectra. (a) The simulated 2D Raman 
spectroscopy time-domain data of molecules in which the 
coupling between vibrational levels was turned off. Inset: 
A typical three-pulse sequence used in 2D Raman 
spectroscopy measurements. (b) The corresponding 2D 
spectrum, computed with FFT. The arrows mark false 
features that appear as cross peaks, although  no cross 
peaks should be present. The plot is presented in log 
scale. 

In addition to the problems caused by the long 
tails, off-diagonal peaks between each 
molecular frequency and its overtones add 
additional strong features to the 2D spectrum 
that may interfere with reading the cross peak 
values. These overtone peaks can be caused by 
both the impulsive excitation of a single level 

and multiple excitations and are observed when 
using all Fourier-transform 2D spectroscopy 
methods (see below). An example of this 
difficulty  is also observed in Fig. 1b. An off-
diagonal peak at (217 cm-1, 434 cm-1), between 
the 217 cm-1 line and its first overtone, covers 
the location of another potential cross peak, at 
(217 cm-1, 459 cm-1) (marked by a brown 
arrow). 

In this work, the BOMP algorithm is used to 
separate the spectral responses of the various 
signal components by using prior knowledge 
about the signal form. Indeed, compressed 
sensing (CS) (16,17), which also uses sparse 
signal recovery techniques, was introduced in 
recent years as a way to accelerate 2D-FT 
experiments by reducing the number of 
measurements needed or, equivalently, super-
resolving the acquired data in the spectral 
domain (18–29). However, the aims of our 
BOMP analysis and CS are fundamentally 
different. Whereas BOMP analysis is used here 
to fit the signal to a model, CS is typically used 
to approximately reconstruct the 2D spectrum 
that would be obtained using FFT but with a 
shorter acquisition time. Therefore, CS cannot 
separate signal components that inherently 
overlap in the frequency domain, even given 
unlimited spectral resolution (for example, due 
to homogenous broadening). 

 

MATERIALS AND METHODS 

BOMP is an efficient method for recovering 
block-sparse signals. A signal is considered 
sparse if it can be represented in some basis 
where most of the coefficients of the basis 
vectors are zero, and a signal is considered 
block-sparse when these nonzero coefficients 
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represent groups of vectors (30). For example, a 
1D spectrum is sparse if the number of principle 
molecular frequencies that it contains is small 
relative to the spectral window, and it is block-
sparse if each such principle frequency predicts 
the appearance of several related frequencies in 
the spectrum, such as its overtones. 2D 
spectroscopy data are a natural candidate for 
reconstruction with BOMP since their? spectral 
response is highly clustered. To understand 
why, let us consider the form of the acquired 
data. In a 2D spectroscopy experiment, the 

delays )1(t and )2(t  in the three-pulse sequence 
become discrete vectors of equally spaced 
measurement points, 

)1()1(
2

)1(
1

)1( ,..., itttt = and )2()2(
2

)2(
1

)2( ,..., jtttt = . 

Therefore, the measured data forms a 2D 
matrix, as in Fig. 1a. For a sample with a single 
energy level ω , a typical matrix element of the 
experimental data set will have the following 
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where i and j are the matrix indices; 

( )tD ;,,, γσϕω  is a decaying oscillatory 

function of frequency ω  that includes 
homogenous broadening of width γ  and 

inhomogeneous broadening of width σ ; ϕ  is 

the phase of the oscillations with respect to the 

decaying envelope; kmn ,,  and l  represent the 
ththth kmn ,,  and thl  overtones, respectively;  

,, klnm BA  and klC  are proportionality constants; 

and the sum is performed up to N , which is the 
highest overtone with a significant contribution 
to the signal. The second term of Eq. 1 appears 
since a pulse sequence with two time delays, 

)1(t and )2(t , necessarily also contains their 
difference (see inset of Fig.1a) and therefore 
also a signal component that oscillates as a 
function of that difference. The overtones of 
each frequency of the sample appear whenever 
the time-domain signal oscillation is more 
impulsive than a pure cosine and when 
transitions due to multiple excitations are 
present (31) (a variable anharmonicity can be 

added when relevant; see SI I part 1). The th0  
overtone represents a DC component, i.e., a 

vector with decay only; hence,  0iS  and jS0  

appear as axial peaks in the 2D spectrum. For a 
sample with multiple energy levels, excluding 
interactions between the levels, the total sample 

response is ( )=
ω

ωij
tot
ij SS . 

As seen from Eq. 1, the existence of a certain 

molecular frequency αω  in the sample predicts 

the appearance of a distinct group of terms in 
the signal, encompassing the diagonal ( mn = ), 
axial ( 0=n  or 0=m ), overtone ( mn ≠  and 

0, ≠mn ) and time-difference terms of αω . This 

group serves as the basic block used by BOMP 
analysis as follows: A large database of blocks 
is created (a dictionary), where each block 
represents a frequency of an energy level that 
could be present in the sample, and it contains 
all of the terms described by Eq. 1. The 
algorithm searches iteratively for the block with 
the maximal sum of inner products between the 
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block members and the data. Each iteration 
retrieves one molecular frequency and the 
magnitude of all associated terms, removes 
these terms from the data and orthogonalizes the 
residual (32). The halting condition may be a 
bound on the error or the number of molecular 
frequencies, if known. Prior knowledge of the 
lineshape parameters or any unknown parameter 
in the model is not required since BOMP can be 
used to recover their values in addition to the 
molecular frequencies (see SI I, part 1). Once 
BOMP has removed all of the signal 
components associated with the stronger peaks, 
represented in Eq. 1, the residual data are fitted 
to a matrix that describes coupling between 
modes, with entries of the following form: 
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(2)

 

according to the retrieved molecular 

frequencies. Here,  αω and βω  represent two 

different energy levels of the sample, and 00 , BA  

and 0C are constants. This step recovers the 

cross peak values and concludes the analysis. 

Since BOMP fits the signal to a model, it is 
related to spectral analysis methods such as 
parametric linear prediction techniques, the 
filter diagonalization method, maximum 
likelihood, Bayesian analysis, multi-
dimensional decomposition, and 
implementations of nonlinear least-squares 
fitting (33–44). However, for sparse signals 

such as 2D spectroscopy data, sparse signal 
recovery methods have been shown to fit the 
signal robustly in the presence of noise and have 
provable recovery guarantees (16,45). 
Moreover, the addition of the block-form 
constraint serves to reduce the parameter space 
of the problem. These two properties of BOMP 
allow the recovery of the correct signal 
representation in larger solution spaces and 
higher noise levels than would otherwise be 
possible. In fact, the BOMP algorithm has been 
shown to come close to the Cramer-Rao bound 
(46) and could retrieve cross peak values that 
were an order of magnitude weaker than the 
noise level in a simulation we performed (see SI 
2.2). Successful recovery with BOMP generally 
relies on two main criteria in the user input: a 
sufficient number of measured data points and 
the quality of the block dictionary. For an in-
depth discussion of these criteria and other 
aspects of the performance of BOMP, see SI 2. 

When analyzing time-resolved 2D spectra, the 
2D spectrum for each waiting time can 
generally be analyzed with BOMP as currently 
implemented. Since BOMP extracts the 
magnitudes of all peaks in an analyzed 
spectrum, the variations in their magnitudes as 
functions of the waiting time are directly 
obtained from the results. As BOMP can be 
used to extract the values of other parameters, 
such as lineshape parameters, it also can be used 
to follow their variations as functions of the 
waiting time. Models that include population 
and coherence transfer (47–49) can be 
accommodated by adding both cross peaks and 
diagonal peaks shifted by diagonal 

anharmonicity. The ( )tD ;,,, γσϕω  function 

used here already includes bimodal decay, but 
adding a third decay rate might be necessary in 
some cases of population and coherence 
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transfer. BOMP can be extended to analyze 
three-dimensional spectra, as discussed in more 
detail in SI 1. 

  

RESULTS AND DISCUSSION 

Numerical results 

To test the performance of BOMP analysis, we 
prepared two sets of simulated 2D Raman 
spectroscopy data. The first set simulates a 
sample of CCl4 without any coupling between 
vibrational levels, and the second simulates a 
sample of CCl4 with coupling. The sampling 
rate and window size were set to match those of 
a typical 2D Raman experiment (see SI 3 for 
simulation details).To start, , both data sets were 
analyzed using FFT, producing the results in 
Fig. 2. We can observe only minor differences 
between the simulation without coupling (Fig. 
2a) and that with coupling (Fig. 2b) since the 
features from the diagonal peaks at 217 cm-1 and 
459  cm-1 and from the overtone peak at (217  
cm-1, 434  cm-1) covered the cross peak 
locations almost entirely (marked with black 

Xs). 

In contrast, the analysis of the same two data 
sets using BOMP clearly shows the differences 

between the sets with and without coupling. The 
cross peak values retrieved using BOMP 

analysis (represented by 0A  in Eq. 2) on both 

sets are presented in Fig. 3. We observe that 
whereas BOMP finds significant energy in the 
(217  cm-1, 459  cm-1) and (313  cm-1, 459  cm-1) 
cross peaks in the simulation with coupling 
(orange), it finds noise-level energy for the same 
cross peaks in the simulation without coupling 
(purple). Furthermore, to verify that the 
retrieved values of the cross peaks are correct, 
we prepared a third simulated data set that 
contains only those terms that cause cross peaks 
and no terms that cause diagonal, axial, or 
overtone peaks (see SI 3). In this data set, the 
cross peak values remain the same, but all of the 
tails from the diagonal and overtone peaks are 
absent, so FFT yields the true cross peak values. 
The results from analyzing this set with FFT, as 
shown in Fig. 3 in blue, agree well with the 
results of running BOMP on the full simulation  

with coupling (orange). From both tests, we 
may conclude that BOMP analysis retrieves the 
true, background-free, cross peak values. For a 

comparison with the results from simulated data 
with additive white Gaussian noise, see SI 2. 

Figure 2 Analyzing simulations with and without coupling using FFT. (a) The 2D FFT of simulated 2D Raman spectroscopy 
data from CCl4 molecules without coupling. (b) The 2D FFT of simulated CCl4 data with coupling. Both spectra are 
normalized. Due to the overtone peaks and the long tails of the diagonal peaks, only minor differences between the 
simulations are discernible, and the true values of the cross peaks in (b) are difficult to distinguish (locations marked with 
black Xs). 
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Figure 3 Analyzing the simulations presented in Fig. 2 
and experimental data with BOMP. The cross peak values 
retrieved by BOMP from the simulation without coupling 

(purple), the simulation with coupling (orange) and the 
experimental data (green). The cross peak values of a 
simulation with coupling only, and therefore without any 
tails, as calculated using FFT, are presented for 
comparison (blue). The cross peak values from the three 
data sets with coupling agree well. 

Experimental results 

We now analyze the experimental results from a 
2D Raman spectroscopy measurement on liquid 
CCl4 (8) with BOMP. The cross peak values 
retrieved from the experimental data are shown 
in green in Fig. 3. The error bar values were 
computed by propagating the error caused by 
experimental noise in the time-domain 
measurement (SNR of ~10:1). These results can 
also be used to create a clean, high-resolution 
2D spectral plot of the cross peak signal only. 
The advantage of plotting the cross peak 
component of the signal on its own is 
demonstrated in Fig. 4, which compares several 
methods for analyzing the experimental data. 
The results from conventional FFT analysis, as 
shown in Fig. 4a, display long tails extending 

from the diagonal peaks as well as strong 
overtone peaks and additional artifacts. The plot 
clearly contains features covering the cross peak 
locations (marked by black Xs) and lacks the 
resolution necessary for discerning the cross 
peak values. Fig. 4b shows the full 2D spectral 
response, including all time-domain signal 
components, retrieved by BOMP from the same 
data. The artifact on the diagonal (see SI I, Eq. 
4) and features due to noise were not 
reconstructed for clarity. Since this plot is 
constructed directly in the spectral domain, it is 
equivalent to the spectral response that would be 
retrieved using FFT from a measurement with 
an infinitely large temporal window. Although 
the plot is free from spectral leakage and has 
significantly higher resolution, the physical 
properties of the signal still prevent proper cross 
peak analysis. The tails caused by homogenous 
broadening still cover the location of the (217  
cm-1, 313  cm-1) cross peak, and alter the shape 
of the (313  cm-1, 459  cm-1) cross peak, likely 
modifying its value. Moreover, the (217  cm-1, 
434  cm-1) overtone peak interferes with the 
(217  cm-1, 459  cm-1) cross peak. Therefore, 
eliminating spectral leakage alone by adding 
more data points or with conventional 
compressed sensing techniques (24,25,27,29) 
would not have provided an adequate solution. 
We note that simply removing the real part of 
the lineshape (dispersive), as is done by using 
phase-cycling (50) or computing the sum of the 
rephasing and non-rephasing spectra (51), 
would have not been sufficient either, as the 
imaginary part of the homogenously broadened 
lineshape (absorptive) still creates significant 
tails. Finally, Fig. 4c shows the 2D spectral 
response corresponding to the cross peak signal 
only, as retrieved by BOMP. This spectrum is 
free from any additional components or artifacts 
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that may distort the cross peaks and provides a 
high-resolution, accurate representation of a 
relatively weak signal component that would be 
otherwise difficult to study. 

 

CONCLUSIONS 

In this work, Block Orthogonal Matching 
Pursuit was used to analyze data from a 2D 
Raman spectroscopy experiment. The analysis 
was performed by identifying and removing the 
stronger signal components from the data before 
analyzing the coupling signal, thereby 
eliminating the ambiguities in cross peak 
analysis that are associated with the use of FFT. 
Since BOMP provides an approximate 
analytical representation of the 2D spectral 
response, the analysis method presented here 
can be used to explore properties of the signal 
other than the cross peaks, such as the lineshape, 
phase, and magnitude of each peak in the 
spectrum. For highly complex spectra with non-
standard features, BOMP can be used in 
conjunction with FFT and other tools that can 
assist in building a proper dictionary. 
Furthermore, BOMP can be combined with 

dictionary learning algorithms (52) so that the 
optimal dictionary can be learned from the data. 

BOMP analysis could be applicable to a wide 
range of Fourier-transform spectroscopies and 
may allow the successful recovery of the 
parametric form of acquired data where non-
sparsity-based techniques fail. Although much 
work has been done in the field of 
multidimensional NMR with non-Fourier 
analysis methods for spectral analysis, there are 
fewer such works in multidimensional optical 
spectroscopy. We therefore believe that BOMP 
analysis may enable the study of aspects of 
spectral responses that would not be possible to 
study with optical spectroscopy otherwise. 
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